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An expression is derived for the change of local Kr value of a crackfront near circular and 
spherical inclusions with elastic moduli and thermal expansion coefficient different from 
those of the matrix. The derivation is based on the concept of an "image stress" which is 
imposed on the crack, to illustrate the interaction between elastic and thermal stress 
concentrations developed around inclusions in a composite material and the crack-tip 
stress field. 

1. Introduction 
It is known [1,2] that second phase inclusions (or 
pores) with different elastic moduli and thermal 
expansion coefficients give rise to local stress con- 
centrations in a composite material. Using the 
complex variable approach and the elastic solutions 
given by Muskhelishvili [3], Tamate [4] and 
Tirosh and Tetelman [5] have shown that there 
occurs a change in stress intensity factor for a 
crack approaching a cylindrical inclusion. 

The problem treated herein concerns the inter- 
action between the crack-tip stress field and the 
stress concentrations developed around circular 
and spherical inclusiong (or pores) with different 
elastic and thermal expansion coefficients. The 
solutions for the elastic stress concentrations 
around circular and spherical inclusions (or pores) 
due to an applied uniaxial tension are taken from 
Goodier's [1] treatment. An approach is adopted 
which gives a simple analytical solution for the 
change of local crack driving force caused by the 
elastic and thermal stresses around inclusions (or 
pores). The results are discussed in the light of 
available literature. 

2. Analysis 
When a load is applied to propagate a crack (Mode 
I, i.e. where a tensile load is applied normal to the 
crack surfaces) in a composite, a stress field is also 

generated around the inclusions due to elastic mis- 
match, For example, the two-dimensional form of 
iso-stress contours for the tangential component 
(o00) around an A1203 sphere and a pore in a 
glass matrix are shown in Fig. 1 (based on Goodier's 
[1] treatment), Differences of thermal expansion 
coefficient give rise to hydrostatic stresses around 
inclusions [2] when composite materials are 
cooled from fabrication temperature. An estimate 
of the change of local K1 values for a crack in a 
composite due to these stress fields can be made 
using the concept of an "image stress" on the 
crack front due to the inclusion it is approaching. 

Consider a crack moving on an infinite plane 
coincident with the equatorial plane of an in- 
clusion (Fig. 2). A biaxial stress condition exists 
along this plane. If  Oa is the applied stress in a 
body containing no inhomogeneities, introduction 
of a second phase of different elastic properties 
will change the stress conditions of the body, i.e. 

O'new = (Oi)due to o a - -  Oa (1) 

where oi is the stress concentration due to the pre- 
sence of the inclusions in the applied stress field 
(Oa) in the absence of a crack. When a crack-front 
is very near the inclusion, oi will mostly result 
from the oyy component of the crack field and the 
effect of Oa will be negligible in this case. Hence, 
under this condition 
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Figure I eO0/O a for (a) AI= Oa in glass and (b) pore in glass. (The digits represent values of e/aa). 

a n e w  = ( o i ) a u e  to oy s - -  ( o ) , ,  ( 2 )  

Now the ei along the equatorial plane of  a circular 
and spherical inclusion due to an applied stress (in 
this case the biaxial crackfront stress, where ovv = 
exx along the 0' = 0 ~ direction) can be found by 
considering Goodier's solution [1] for the tangen- 
tial component  of  the stress field around a circular 
inclusion; 

[ A ( r f  3B(sr--f 201 ~100 = 2aa -- cos 

+ 2 ( 1  - cos 20) (3) 

and around a spherical inclusion 

[. A'r 3 2pro C!r 3 3B'r s 
o00 = s 3 1--2Vrn s 3 s s 

+ 7 -  s s ]COS20  

+ ~ ( 1  -- cos 20) (4) 

In Equations 3 and 4, r is the radius of  the in- 
clusion, s is the distance from the centre of  the in- 
clusion (see Fig. 2) and A, B, A' ,  B'  and C' are 
constants whose values depend on the elastic mis- 
match: 

A = (1 -- 2vi)G m 
4((1 -- 2vi)G m + Gi) 

Gm -- Gi 
B =  

4(Gin + (3 -- 4vm)Gi) 
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A' = 
G m -  Gi 

2(7 --" 5vm)Gm + (8 -- 10vm)Gi 

(1 - - 2 v i ) ( 6 -  5vm)2Gm + (3 + 1 9 v i -  20VrnVi)~ 

(1 --  2vi)2Gra + (1 + vi)Gi 

+ [(1 -- Urn)(1 + vi)/(1 + Vm) --  vi] G i -  (1 --  2vi)Gra 

(1 - -  2vi)2G m + (1 + vi)Gi 

B '  = G m  - -  Gi 
2(7 -- 5vm)G m + (8 --  10Vra)Gi 

s ( l  - 2~m)(am -- Ci) 
C t = 

2(7 -- 5vm)G m + (8 -- 10vm)Gi 

where G m and Gi are the rigidity moduli for the 
matrix and inclusion, respectively, and Vra and vi 
are the Poisson's ratios for the matrix and in- 
clusion. 

Now for 0 = 0 + 2 '  from Equation 3, it fol- 

lows that, for circular inclusion, 

- [<  (~00)0=0. 2 = ~-- (1 + cos 20) + 2 %  

+ 3B(r)4 cos 20 ] (5) 

Hence in any direction, the biaxial tangential com- 
ponent of  stress due to the inclusion is (by ad- 
dition of Equations 3 and 5 

( ( 7 0 0 ) b i a x i a l  = O'a -[- 4Aoa = (O ' i )due  t o  o" a-  

(6) 



When the crack-front is very close to the in- 
clusion and is running in the 0 ' =  0 ~ direction 
(Fig. 2), Equation 6 modifies (as crvy >> aa) to 

(o00)bi, xi.~ = (oyy)0'=oo + 4[(eyy)o'=oolA r 

= (Ui)due to oyy ( 7 )  

Hence, the "new stress" acting along the crack- 
front when it is very near the inclusion will be 
(from Equations 2 and 7) 

%ow = ( o 0 0 ) b ~ - -  (a , , )0 '=o 

= 4A [(oyy)0,=o] 

= 4A X/2*vt (8) 

where t is the distance of the crack-front from the 
centre of the inclusion and KI is the stress inten- 
sity factor (Mode I) at the crack tip in the absence 
of the inclusion. This e,ew will change the value of 
the crack intensity factor K 1 of the crack-front by 
"AK",  restricted by the following boundary con- 
dition for the crack shown in Fig. 2. 

A K - -  f-s ds = 0 

(9) 

w h e r e  Uimag e is equal to Gne w as given in Equation 
8 but is acting in the opposite direction so as to 
satisfy the condition given in Equation 9. Hence, 
from Equation 9, 

c:: ' l(  ~ tds  

_ 4Ar2Ki f  s=t ds 
~r~/(O J,=~ s~(s -- t) 1~ 

2Ar 2 
- -  t2 K I. ( 1 0 )  

Therefore, for circular inclusion 

( ( K n ~ w ) ~  mm,.t~h = K~-- ZXK = K~ 1 + t~ : 

(11) 

Similarly for a spherical inclusion, using 
Equation 4 for o0o and going through the same 
procedures from Equations 5 to 8, we have, 

l t I 
%0 

~moge] I"> ~ f ' 7 ~ r  

N t -~ -7 

Figure 2 The interaction between an inclusion and a crack 
in the matrix in the near vicinity of the inclusion. 

KI 
( O ' n e w ) s p h ~ a l  - -  x/(2)rrt 

_ A'r 2v m C'r s 3B'r s] 

S s 1 -- 2v m S s S s ]" 

(12) 

When the crack-front approaches the spherical 
inclusion, the condition given in Equation 9 must 
be satisfied, hence (as in Equation 10), 

AK = (Unew)spherica 1 = ~  ds 

_ A ' r 3 K i f  s=t ds 
7rx/(t) ~.=~ s3(s - - 0  '/2 

2v~v,C'r3 K I fs=t ds 
-- (1 ~ ( t )  .=~ s3(s = t) u2 

3B,rS Ki fs=t ds 
7rx/(t) J,= ~ sS(s Z t)v2 

/0.39A' r3 0"78vmC' r3 
~ - +  l _ _ 2 V ~  t 3 

+ 0 . 8 2 0 B ' ~  1. 

Hence, for spherical inclusion, 

(Knew)elastic mi.~,nateh = KI -- AK = 

ra 0.78vmC' r 3 
KI 1 -- 0.39A' ts (1 -- 2vm) t 3 ,s 1 o.82oa' 7 

(13) 
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The effect of  thermal residual stress on the K I 
value can be estimated using the tangential com- 
ponent of  the residual stress given by [2] 

aoo = : \ s ]  (14) 

where 

A~A T 

f l =  (1 + V m l  ( 1 - - P i t  

\ 2--EZ-  ]+ \ 2ei / 

Era, El, vm, vi are the Young's moduli and Poisson's 
ratio for the matrix and inclusion respectively, Aa 
is the difference in thermal expansion coefficients 
between matrix and inclusion, and AT is the tem- 
perature difference. Hence, as in the case of  the 
"elastic mismatch".  

AK = anew =~ ds 

- x/(27r)&=~ s3 ( sZ  t)v~ - 0"470~r3/ts/2 

Hence, 

(Knew)thermal raimaateh = KI + 0.4 70~r3 /ts/2 

Equations 13 and 15 are valid for a crack 
approaching a single inclusion. I f  the crack-front 
meets a linear array of  similar obstacles with an 
average inter-obstacle spacing d, then 

r 

(zXX3ave~_,o = a~tT|=a/2 (AK)dt"  (16) 

3. Discussion 
From the foregoing analysis (Equation 13), it is 
evident that the nature of  the influence of  an in- 
clusion and a pore on the crack-driving force KI 
(Mode I) of  an approaching crack-front is clearly 
different and is characterized by the value of  elastic 
mismatch coefficients A' ,  B' and C' (given in 
Equation 4). If  the values o f A ' ,  B' and C' are such 
that Kne w < K ,  then the velocity of  the crack- 
front would decrease as it approaches the inclusion; 
on the other hand if the value o f A ' ,  B' and C'  are 
such that Knew > K, then the velocity of  the crack- 
front will increase as it approaches the inhomogen- 
eity. For example, in glass-Al2 03 composite A '  = 
0.458, B' = --0.166 and C'  = --0.50, so Kne w < K  
in this case, and the velocity of  the crack-front 
should locally decrease as it approaches a spherical 
alumina inclusion in a glass matrix. In fact the 
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Figure 3 (a) Crack-front shapes in a glass matrix 
near an inclusion [6]. (b) Crack-front shapes in 
a glass matrix near a pore [7]. (Direction of 
crack propagation is from the bottom to the 
top.) 



velocity will be decreased for a spherical inclusion 
for which G i ~> Gin, as the coefficient A' is always 
positive in these case. For a pore G i = 0 (<Gin) , 
so that Kne w > K in this case (from Equation 13), 
and an approaching crack-front will be locally 
accelerated. Two such distinct behavioural changes 
of crack-front shape were experimentally observed 
for inclusion/glass and capillary pore/glass systems 
shown in the ultransonically modulated fracture 
surface photographs, Figs. 3a and b [6, 7]. 

In the photographs the distance between the 
ripples gives a measure of the velocity of the crack- 
front. The nature of the influcence of the inclusion 
with G i > G  m and the pore with G i =  0 ( ~ G m )  

on the crack-front, qualitatively agrees with the 
result of Tirosh and Tetelman [4]. However, the 
changes of KI value for a crack near an inclusion 
(or pore) are usually small; for example ~10% for 
A1203 inclusion in glass and ~25% for a pore in 
glass, when the crack-front is very close to the in- 
clusion or to the pore. Hence, the local deceleration 
(or acceleration) of a crack-front near an inclusion 
(G i > Gin) or pore (G i = 0 < Gin) will be small 
and hence its contribution to the large increase in 
toughening observed in composite materials [8] 
may also be small. Changes in the crack-driving 
force due to thermal mismatch are even smaller 
compared to the elastic mismatch contribution. In 
the thermal case, the change in crack-front velocity 
(and hence shape) depends on the thermal mis- 
match coefficient/3 (see Equation 12). In the case 
of glass-A12Oa composite, /3--~ 3.4 x 108 dynes 
cm -2 (when a i > am) giving a resultant change in 
K I values by less than 2% for K I = 60%Kic (the 
thermal mismatch effect may be significant; how- 
ever, if the localized residual stress cracks the 
particle/matrix interface or gives rise to adjacent 
microflaws). Such small effect of elastic and 
thermal mismatches on the K1 values for an 
approaching crack-front justify, to a first approxi- 

mation, the assumptions made in several models 
[8, 9] (put forward to explain the observed tough- 
ness in composite materials) that the crack-front in 
unifluenced by elastic and thermal mismatch. 
However, the presence of elastic stress concen- 
tration (Orr) at the poles of the inclusion may alter 
the direction of propagation of a crack as it 
approaches the inclusion. 

The present analysis illustrates that, depending 
on the nature of elastic mismatch (i.e. on the value 
of coefficient A', B' and C') between matrix and 
inclusion (or pore), the crack-front will respond 
differently. The effect of thermal mismatch on 
local KI values for an approaching crack-front is 
negligibly small. 
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